Role of Streptococcus mutans surface proteins for biofilm formation
نویسنده
چکیده
Streptococcus mutans has been implicated as a primary causative agent of dental caries in humans. An important virulence property of the bacterium is its ability to form biofilm known as dental plaque on tooth surfaces. In addition, this organism also produces glucosyltransferases, multiple glucan-binding proteins, protein antigen c, and collagen-binding protein, surface proteins that coordinate to produce dental plaque, thus inducing dental caries. Bacteria utilize quorum-sensing systems to modulate environmental stress responses. A major mechanism of response to signals is represented by the so called two-component signal transduction system, which enables bacteria to regulate their gene expression and coordinate activities in response to environmental stress. As for S. mutans, a signal peptide-mediated quorum-sensing system encoded by comCDE has been found to be a regulatory system that responds to cell density and certain environmental stresses by excreting a peptide signal molecule termed CSP (competence-stimulating peptide). One of its principal virulence factors is production of bacteriocins (peptide antibiotics) referred to as mutacins. Two-component signal transduction systems are commonly utilized by bacteria to regulate bacteriocin gene expression and are also related to biofilm formation by S. mutans.
منابع مشابه
A proteomic approach for exploring biofilm in Streptococcus mutans
Biofilm formation by Streptococcus mutans is considered as its principal virulence factor, causing dental caries. Mutants of S. mutans defective in biofilm formation were generated and analyzed to study the collective role of proteins in its formation. Mutants were characterized on the basis of adherence to saliva-coated surface, and biofilm formation. The confocal laser microscopy and scanning...
متن کاملRole of HtrA in surface protein expression and biofilm formation by Streptococcus mutans.
The HtrA surface protease in gram-positive bacteria is involved in the processing and maturation of extracellular proteins and degradation of abnormal or misfolded proteins. Inactivation of htrA has been shown to affect the tolerance to thermal and environmental stress and to reduce virulence. We found that inactivation of Streptococcus mutans htrA by gene-replacement also resulted in a reduced...
متن کاملFunctional genomics approach to identifying genes required for biofilm development by Streptococcus mutans.
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm reg...
متن کاملEvaluation of inhibitory effects of Chlorella vulgaris extract on growth, proliferation and biofilm formation by Streptococcus mutans and evaluation of its toxicity
Background & Objectives: Dental caries is the most important disease caused by some bacteria specially Streptococcus Mutans from Viridans family. The aim of this study is to evaluate the inhibitory effect of Chlorella vulgaris extract on growth, proliferation, and biofilm formation of Streptococcus mutans. Materials & Methods: Microalgae Chlorella vulgaris was extracted via maceration using ch...
متن کاملSynergistic Effect of Methanolic Extracts of Rosmarinus Officinalis and Eugenia caryophyllata on Biofilm of Oral Pathogenic Bacteria
Introduction: Tooth decay is one of the most essential and costly diseases globally, which is caused by the formation of biofilms by various bacteria. This study aimed to investigate the synergistic antibacterial effect of Rosmarinus officinalis and Eugenia caryophyllataon inhibiting the growth and biofilm obtained of Streptococcus mutans and Streptococcus sanguinis bacteria. Methods: Rosmarin...
متن کامل